Center for Bright Beams: Publications

Skip to content
Center for Bright Beams Center for Bright Beams Center for Bright Beams Center for Bright Beams Center for Bright Beams

A NATIONAL SCIENCE FOUNDATION SCIENCE & TECHNOLOGY CENTER

Publications by Year

2020

[1]
N. Sitaraman and T. A. Arias, “A First-Principles Study of the A-15 Phase in the Nb-Sn System,” In preparation.
[2]
Johannes Kevin Nangoi, “The role of bulk electronic states and coherent electron-phonon scattering in photoemission from single-crystal PbTe(111),” In preparation.
[3]
C. Hansel, W. An, W. Mori, and J. B. Rosenzweig, “Nonlinear equilibria and emittance growth in plasma wakefield accelerators with ion motion,” arXiv:2003.12062 [physics], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.12062
[4]
J. B. Rosenzweig, N. Majernik, R. R. Robles, G. Andonian, O. Camacho, A. Fukasawa, A. Kogar, G. Lawler, J. Miao, P. Musumeci, B. Naranjo, Y. Sakai, R. Candler, B. Pound, C. Pellegrini, C. Emma, A. Halavanau, J. Hastings, Z. Li, M. Nasr, S. Tantawi, P. Anisimov, B. Carlsten, F. Krawczyk, E. Simakov, L. Faillace, M. Ferrario, B. Spataro, S. Karkare, J. Maxson, Y. Ma, J. Wurtele, A. Murokh, A. Zholents, A. Cianchi, and D. Cocco, “An Ultra-Compact X-Ray Free-Electron Laser,” arXiv:2003.06083 [cond-mat, physics:hep-ex, physics:physics], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.06083. [Accessed: 16-Mar-2020]
[5]
J. Carlson, A. Pack, M. K. Transtrum, J. Lee, D. N. Seidman, D. B. Liarte, N. Sitaraman, A. Senanian, J. P. Sethna, T. Arias, and S. Posen, “Analysis of Magnetic Vortex Dissipation in Sn-Segregated Boundaries in Nb$_3$Sn SRF Cavities,” arXiv:2003.03362 [cond-mat, physics:physics], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.03362
[6]
P. Denham, F. Cropp, and P. Musumeci, “Analysis of Skew Quadrupole Compensation in RF-Photoinjectors,” arXiv:2003.00049 [physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2003.00049
[7]
S. Karkare, G. Adhikari, W. A. Schroeder, J. K. Nangoi, T. Arias, J. Maxson, and H. Padmore, “Ultracold electrons via Near-Threshold Photoemission from Single-Crystal Cu(100),” arXiv:2002.11579 [physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2002.11579
[8]
C. J. R. Duncan, D. A. Muller, and J. M. Maxson, “Lossless monochromation for electron microscopy with pulsed photoemission sources and rf cavities,” arXiv:2002.11235 [cond-mat, physics:physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2002.11235
[9]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K. Transtrum, “Role of surface defects and material inhomogeneities for vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in 2 and 3 dimensions,” arXiv:1911.02132 [physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/1911.02132
[10]
C. T. Parzyck, B. D. Faeth, G. N. Tam, G. R. Stewart, and K. M. Shen, “Enhanced surface superconductivity in Ba(Fe 0.95 Co 0.05 ) 2 As 2,” Applied Physics Letters, vol. 116, no. 6, p. 062601, Feb. 2020, doi: 10.1063/1.5133647. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.5133647
[11]
L. Cultrera, A. Galdi, J. K. Bae, F. Ikponmwen, J. Maxson, and I. Bazarov, “Long lifetime polarized electron beam production from negative electron affinity GaAs activated with Sb-Cs-O: Trade-offs between efficiency, spin polarization, and lifetime,” Physical Review Accelerators and Beams, vol. 23, no. 2, Feb. 2020, doi: 10.1103/PhysRevAccelBeams.23.023401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.023401
[12]
J. T. Paul, A. Galdi, and R. G. Hennig, “Computational Synthesis of Substrates and 2D Materials by Crystal Cleavage,” arXiv:2002.00903 [cond-mat], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2002.00903



2019

[1]
N. S. Sitaraman, J. Carlson, A. R. Pack, R. D. Porter, M. U. Liepe, M. K. Transtrum, and T. A. Arias, “Ab Initio Study of Antisite Defects in Nb3Sn: Phase Diagram and Impact on Superconductivity,” arXiv:1912.07576 [cond-mat, physics:physics], Dec. 2019 [Online]. Available: http://arxiv.org/abs/1912.07576
[2]
J. Mann, G. Lawler, and J. Rosenzweig, “1D Quantum Simulations of Electron Rescattering with Metallic Nanoblades,” Instruments, vol. 3, no. 4, p. 59, Dec. 2019, doi: 10.3390/instruments3040059. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/59
[3]
N. Majernik and J. Rosenzweig, “Design of Comb Fabricated Halbach Undulators,” Instruments, vol. 3, no. 4, p. 58, Dec. 2019, doi: 10.3390/instruments3040058. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/58
[4]
G. Lawler, K. Sanwalka, Y. Zhuang, V. Yu, T. Paschen, R. Robles, O. Williams, Y. Sakai, B. Naranjo, and J. Rosenzweig, “Electron Diagnostics for Extreme High Brightness Nano-Blade Field Emission Cathodes,” Instruments, vol. 3, no. 4, p. 57, Dec. 2019, doi: 10.3390/instruments3040057. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/57
[5]
J. K. Bae, A. Galdi, L. Cultrera, F. Ikponmwen, J. Maxson, and I. Bazarov, “Improved lifetime of a high spin polarization superlattice photocathode,” arXiv:1911.09609 [physics], Nov. 2019 [Online]. Available: http://arxiv.org/abs/1911.09609
[6]
S. R. Xie, G. R. Stewart, J. J. Hamlin, P. J. Hirschfeld, and R. G. Hennig, “Functional form of the superconducting critical temperature from machine learning,” Phys. Rev. B, vol. 100, no. 17, p. 174513, Nov. 2019, doi: 10.1103/PhysRevB.100.174513. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.100.174513
[7]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K. Transtrum, “Role of inhomogeneities for vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory,” arXiv:1911.02132 [physics], Nov. 2019 [Online]. Available: http://arxiv.org/abs/1911.02132. [Accessed: 15-Nov-2019]
[8]
E. Padgett, M. E. Holtz, P. Cueva, E. Langenberg, D. G. Schlom, and D. A. Muller, “The Exit-Wave Power-Cepstrum Transform for Scanning Nanobeam Electron Diffraction. Part 1: Robust Strain Mapping at Subnanometer Resolution and Subpicometer Precision,” arXiv:1911.00984 [cond-mat], Nov. 2019 [Online]. Available: http://arxiv.org/abs/1911.00984
[9]
J. Rosenzweig, “Towards an ultra-compact x-ray free-electron laser (Conference Presentation),” in Advances in Laboratory-based X-Ray Sources, Optics, and Applications VII, 2019, vol. 11110, p. 1111006, doi: 10.1117/12.2531143 [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11110/1111006/Towards-an-ultra-compact-x-ray-free-electron-laser-Conference/10.1117/12.2531143.short
[10]
A. Pack and M. Transtrum, “Numerical Calculations of the Superconducting Superheating Field within Eilenberger Theory,” in Bull. of the Am. Phys. Soc., Prescott, Arizona, 2019 [Online]. Available: http://meetings.aps.org/Meeting/4CS19/Session/B05.2
[11]
Y.-K. Kim, “Program at the center for bright beams to recruit and train the next generation of scientists in accelerator and related fields,” AIP Conference Proceedings, vol. 2160, no. 1, p. 040008, Oct. 2019, doi: 10.1063/1.5127688. [Online]. Available: https://aip.scitation.org/doi/abs/10.1063/1.5127688
[12]
R. D. Veit, N. A. Kautz, R. G. Farber, and S. J. Sibener, “Oxygen dissolution and surface oxide reconstructions on Nb(100),” Surf. Sci., vol. 688, pp. 63–68, Oct. 2019, doi: 10.1016/j.susc.2019.06.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0039602819303589
[13]
R. Robles and J. Rosenzweig, “Compression of Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser,” Instruments, vol. 3, no. 4, p. 53, Oct. 2019, doi: 10.3390/instruments3040053. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/53
[14]
N. Majernik and J. B. Rosenzweig, “Halbach undulators using right triangular magnets,” Phys. Rev. Accel. Beams, vol. 22, no. 9, p. 092401, Sep. 2019, doi: 10.1103/PhysRevAccelBeams.22.092401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.092401
[15]
Z. Sun, M. Liepe, J. Maniscalco, T. Oseroff, R. Porter, D. Zhang, and X. Deng, “Fast Sn-ion transport on Nb surface for generating NbxSn thin films and XPS depth profiling,” in Proc. NAPAC’19, Lansing, MI, 2019 [Online]. Available: https://napac2019.vrws.de/papers/weplm60.pdf
[16]
W. H. Li, M. B. Andorf, I. V. Bazarov, L. Cultrera, C. J. R. Duncan, A. Galdi, J. M. Maxson, and C. A. Pennington, “Ultrafast Nonlinear Photoemission from Alkali Antimonide Photocathodes,” in Proc. NAPAC’19, Lansing, MI, 2019 [Online]. Available: https://napac2019.vrws.de/papers/moplh14.pdf
[17]
G. S. Gevorkyan, S. Karkare, I. V. Bazarov, L. Cultrera, A. Galdi, W. H. Li, and J. M. Maxson, “Design of a 200 kV DC Cryocooled Photoemission Gun for Photocathode Investigations,” in Proc. NAPAC’19, 2019 [Online]. Available: https://napac2019.vrws.de/papers/moplm16.pdf
[18]
A. J. Dick, P. Piot, and M. B. Andorf, “Progress Toward a Laser Amplifier for Optical Stochastic Cooling,” in Proc. NAPAC’19, Lansing, MI, 2019 [Online]. Available: https://napac2019.vrws.de/papers/tuplm26.pdf
[19]
S. S. Baturin, “Hamiltonian preserving nonlinear optics,” arXiv:1908.03520 [physics], Aug. 2019 [Online]. Available: http://arxiv.org/abs/1908.03520
[20]
F.-H. Ji, J. Giner Navarro, P. Musumeci, D. Durham, A. Minor, and D. Filippetto, “Knife-edge based measurement of the 4D transverse phase space of electron beams with picometer-scale emittance,” Phys. Rev. Accel. Beams, vol. 22, p. 082801, Aug. 2019, doi: 10.1103/PhysRevAccelBeams.22.082801. [Online]. Available: https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.22.082801
[21]
P. Cueva, E. Padget, and D. A. Muller, “Sub-nm Resolution, Sub-pm Precision Structure Mapping Robust to Thickness and Tilt Variations by Cepstral Analysis of Scanning Nanodiffraction 4D-STEM,” Microsc. Microanal., vol. 25, no. S2, p. 1934, Aug. 2019, doi: 10.1017/S1431927619010407. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/subnm-resolution-subpm-precision-structure-mapping-robust-to-thickness-and-tilt-variations-by-cepstral-analysis-of-scanning-nanodiffraction-4dstem/CCB5F9C8DA602648803DDCD4BED06778
[22]
T. E. Oseroff, M. Liepe, B. Moeckly, M. Sowa, and Z. Sun, “RF Characterization of Novel Superconducting Materials and Multilayers,” in Proc. SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-THP044 [Online]. Available: https://srf2019.vrws.de/papers/thp044.pdf
[23]
T. E. Oseroff and M. Liepe, “Improvements  to  the  Cornell Sample  Host  System,” in Proc. SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-THP045.
[24]
S. N. Lobo, M. Liepe, and T. E. Oseroff, “Magnetic Field Mapping System for Cornell Sample Host Cavity,” in Proceedings of SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-THP046.
[25]
C. Duncan, M. B. Andorf, V. Khachatryan, C. Gulliford, J. Maxson, D. Rubin, and I. Bazarov, “A Generic Software Platform For Rapid Prototyping of Online Cotnrol Algorithms,” Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia, Jul. 2019, doi: 10.18429/JACoW-IPAC2019-THPRB100. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb100.pdf
[26]
A. Galdi, C. M. Pierce, L. Cultrera, G. Adhikari, W. A. Schroeder, H. Paik, D. G. Schlom, J. K. Nangoi, T. A. Arias, E. Lochocki, C. Parzyck, K. M. Shen, J. M. Maxson, and I. V. Bazarov, “Low energy photoemission from (100) Ba1−xLaxSnO3 thin films for photocathode applications,” Eur. Phys. J. Spec. Top., vol. 228, no. 3, pp. 713–718, Jul. 2019, doi: 10.1140/epjst/e2019-800175-x. [Online]. Available: https://doi.org/10.1140/epjst/e2019-800175-x
[27]
J. Maniscalco, “Nitrogen doping, nitrogen infusion, and niobium-3 tin: recent challenges and advances in fundamental SRF accelerator physics,” Joint Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC-ICMC), Hartford, CT, Jul. 2019.
[28]
N. Sitaraman, T. A. Arias, R. G. Farber, M. Liepe, J. Maniscalco, S. J. Sibener, and R. D. Veit, “Ab Initio Calculations on Impurity Doped Niobium and Niobium Surfaces,” in Proc. SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-TUP045.
[29]
J. Maniscalco, M. Ge, P. N. Koufalis, M. Liepe, T. A. Arias, D. B. Liarte, J. P. Sethna, and N. Sitaraman, “The Field-Dependent Surface Resistance of Doped Niobium: New Experimental and Theoretical Results,” in Proc. SRF’19, 2019, doi: doi:10.18429/JACoW-SRF2019-TUFUA1 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tufua1.pdf
[30]
J. T. Maniscalco, T. Gruber, A. T. Holic, and M. Liepe, “Progress Towards Commissioning the Cornell DC Field Dependence Cavity,” in Proc. of SRF’19, Dresden, Germany, 2019, doi: doi:10.18429/JACoW-SRF2019-TUP051 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tup051.pdf
[31]
M. Leroux, V. Mishra, J. P. C. Ruff, H. Claus, M. P. Smylie, C. Opagiste, P. Rodière, A. Kayani, G. D. Gu, J. M. Tranquada, W.-K. Kwok, Z. Islam, and U. Welp, “Disorder raises the critical temperature of a cuprate superconductor,” Proc Natl Acad Sci USA, vol. 116, no. 22, p. 10691, May 2019, doi: 10.1073/pnas.1817134116. [Online]. Available: http://www.pnas.org/content/116/22/10691.abstract
[32]
O. Chubenko, S. S. Baturin, and S. V. Baryshev, “Theoretical evaluation of electronic density-of-states and transport effects on field emission from n-type ultrananocrystalline diamond films,” Journal of Applied Physics, vol. 125, no. 20, p. 205303, May 2019, doi: 10.1063/1.5085679. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5085679
[33]
S. Keckert, T. Buck, D. Hall, J. Knobloch, P. Kolb, O. Kugeler, R. Laxdal, M. Liepe, S. Posen, T. Prokscha, Z. Salman, A. Suter, and T. Junginger, “Critical Fields of Nb3Sn Prepared for Superconducting Cavities,” Supercond. Sci. Technol., vol. 32, no. 7, p. 075004, May 2019, doi: 10.1088/1361-6668/ab119e. [Online]. Available: https://doi.org/10.1088/1361-6668/ab119e
[34]
F. H. Ji, D. Durham, A. Minor, P. Musumeci, J. Navarro, and D. Filippetto, “Ultrafast Relativistic Electron Nanoprobes,” Nat. Commun., vol. 2, no. 1, p. 54, May 2019, doi: 10.1038/s42005-019-0154-4. [Online]. Available: https://www.nature.com/articles/s42005-019-0154-4
[35]
M. Liepe, “Superconducting RF for the Future: Is Nb3Sn Ready for Next-generation Accelerators?,” in Proc. IPAC2019, Melbourne, Australia, 2019.
[36]
L. Gupta, S. Baturin, S. Nagaitsev, and Y.-K. Kim, “Study of Integrable and Quasi-Integrable Sextupole Lattice,” Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-MOPGW107. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw107.pdf
[37]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, and D. L. Rubin, “Applications of Dimension-Reduction to Various Accelerator Physics Problems,” in Proc. IPAC2019, Melbourne, Australia, 2019, doi: 10.18429/JACoW-IPAC2019-THPRB099 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb099.pdf
[38]
S. R. Xie, G. R. Stewart, J. J. Hamlin, P. J. Hirschfeld, and R. G. Hennig, “Functional Form of the Superconducting Critical Temperature from Machine Learning,” arXiv:1905.06780 [cond-mat], May 2019 [Online]. Available: http://arxiv.org/abs/1905.06780. [Accessed: 28-May-2019]
[39]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, D. B. Liarte, D. L. Rubin, and J. P. Sethna, “Online storage ring optimization using dimension-reduction and genetic algorithms,” Phys. Rev. Accel. Beams, vol. 22, no. 5, p. 054601, May 2019, doi: 10.1103/PhysRevAccelBeams.22.054601. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.054601
[40]
D. H. Koh and S. S. Baturin, “Analytic model of 3D beam dynamics in a wakefield device,” NIM A, vol. 925, pp. 128–132, May 2019, doi: 10.1016/j.nima.2019.02.016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900219301913
[41]
S. Karkare, J. Feng, J. Maxson, and H. A. Padmore, “Development of a 3-D energy-momentum analyzer for meV-scale energy electrons,” Rev. of Sci. Instr., vol. 90, no. 5, p. 053902, May 2019, doi: 10.1063/1.5091683. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5091683
[42]
J. T. Maniscalco, M. Liepe, T. A. Arias, D. B. Liarte, J. P. Sethna, and N. Sitaraman, “Theoretical Analysis of Quasiparticle Overheating, Positive Q-Slope, and Vortex Losses in SRF Cavities,” in Proc. IPAC2019, Melbourne, Australia, 2019, doi: 10.18429/JACoW-IPAC2019-WEPRB089 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/weprb089.pdf
[43]
N. Kuklev, Y.-K. Kim, S. Nagaitsev, A. Romanov, and A. Valishev, “Experimental Demonstration of the Henon-Heiles Quasi-Integrable System of IOTA,” in Proc. IPAC2019, Melbourne, Australia, 2019, doi: 10.18429/JACoW-IPAC2019-MOPGW113 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw113.pdf
[44]
N. Kuklev, Y.-K. Kim, J. Jarvis, A. L. Romanov, J. K. Santucci, and G. Stancari, “Synchrotron Radiation Beam Diagnostics at IOTA-Commissioning Performance and Upgrade Efforts,” in Proc. of IPAC2019, Melbourne, Australia, 2019, doi: 10.18429/JACoW-IPAC2019-WEPGW103 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/wepgw103.pdf
[45]
J. K. Nangoi, “Ab initio theory and calculations of many-body effects in photoemission from semiconductor surfaces: Cs3Sb as a case study,” Boston, MA, 04-Mar-2019 [Online]. Available: https://meetings.aps.org/Meeting/MAR19/Session/P33.7
[46]
C. B. Clement, M. Bierbaum, and J. Sethna, “Image registration and super resolution from first principles,” arXiv:1809.05583 [physics], Feb. 2019 [Online]. Available: https://arxiv.org/pdf/1809.05583.pdf
[47]
J. B. Rosenzweig, A. Cahill, V. Dolgashev, C. Emma, A. Fukasawa, R. Li, C. Limborg, J. Maxson, P. Musumeci, A. Nause, R. Pakter, R. Pompili, R. Roussel, B. Spataro, and S. Tantawi, “Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources,” Phys. Rev. Accel. Beams, vol. 22, no. 2, p. 023403, Feb. 2019, doi: 10.1103/PhysRevAccelBeams.22.023403. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.023403
[48]
R. Ryan, “Next-gen particle accelerator is aim of Bright Beams work,” Cornell Chronicle, 11-Jan-2019 [Online]. Available: http://news.cornell.edu/stories/2019/01/next-gen-particle-accelerator-aim-bright-beams-work
[49]
R. D. Veit, N. A. Kautz, R. G. Farber, and S. J. Sibener, “Nano-scale Characterization of Niobium Hydride Growth and Suppression Behavior on Nb(100),” Surf. Sci., no. In Press, 2019.
[50]
M. Hu, M. Liepe, and R. D. Porter, “Reducing Surface Roughness of Nb3Sn Through Chemical Polishing Treatments,” in Proc. SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-MOP013 [Online]. Available: https://srf2019.vrws.de/papers/mop013.pdf
[51]
M. Gordon, Y.-K. Kim, and J. M. Maxson, “The Effects of Stochastic Space Charge in High Brightness Photolectron Beamlines for Ultrafast Electron Diffraction,” in Proc. IPAC2019, Melbourne, Australia, 2019, vol. IPAC2019, doi: 10.18429/jacow-ipac2019-wepts069 [Online]. Available: http://jacow.org/ipac2019/doi/JACoW-IPAC2019-WEPTS069.html
[52]
A. Bhargava, C. Y. Chen, K. Dhaka, Y. Yao, A. Nelson, K. D. Finkelstein, C. J. Pollock, M. Caspary Toroker, and R. D. Robinson, “Mn Cations Control Electronic Transport in Spinel CoxMn3–xO4 Nanoparticles,” Chemistry of Materials, vol. 31, no. 11, pp. 4228–4233, 2019, doi: 10.1021/acs.chemmater.9b01198. [Online]. Available: https://doi.org/10.1021/acs.chemmater.9b01198
[53]
S. Baturin, T. Nikhar, and S. Baryshev, “Field electron emission induced glow discharge in nanodiamond vacuum diode,” J. Phys. D: Appl. Phys., 2019, doi: 10.1088/1361-6463/ab2183. [Online]. Available: http://iopscience.iop.org/10.1088/1361-6463/ab2183



2018

[1]
J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, “Brightness of femtosecond nonequilibrium photoemission in metallic photocathodes at wavelengths near the photoemission threshold,” Jour. Appl. Phys., vol. 124, no. 24, p. 244903, Dec. 2018, doi: 10.1063/1.5053082. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5053082
[2]
S. S. Baturin, G. Andonian, and J. B. Rosenzweig, “Analytical treatment of the wakefields driven by transversely shaped beams in a planar slow-wave structure,” Phys. Rev. Accel. Beams, vol. 21, no. 12, p. 121302, Dec. 2018, doi: 10.1103/PhysRevAccelBeams.21.121302. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.121302
[3]
A. Bernstein and R. Rand, “Delay-Coupled Mathieu Equations in Synchrotron Dynamics Revisited: Delay Terms in the Slow Flow,” Journal of Applied Nonlinear Dynamics, vol. 7, pp. 349–360, Dec. 2018, doi: 10.5890/JAND.2018.12.003. [Online]. Available: https://doi.org/10.5890/JAND.2018.12.003
[4]
D. B. Liarte, D. Hall, P. N. Koufalis, A. Miyazaki, A. Senanian, M. Liepe, and J. P. Sethna, “Vortex dynamics and losses due to pinning: Dissipation from trapped magnetic flux in resonant superconducting radio-frequency cavities,” Phys. Rev. Applied, vol. 10, p. 054057, Nov. 2018, doi: 10.1103/PhysRevApplied.10.054057. [Online]. Available: http://arxiv.org/abs/1808.01293
[5]
J. B. Rosenzweig, A. Cahill, B. Carlsten, G. Castorina, M. Croia, C. Emma, A. Fukusawa, B. Spataro, D. Alesini, V. Dolgashev, M. Ferrario, G. Lawler, R. Li, C. Limborg, J. Maxson, P. Musumeci, R. Pompili, S. Tantawi, and O. Williams, “Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources,” NIM A, vol. 909, pp. 224–228, Nov. 2018, doi: 10.1016/j.nima.2018.01.061. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900218300780
[6]
P. Musumeci, J. Giner Navarro, J. B. Rosenzweig, L. Cultrera, I. Bazarov, J. Maxson, S. Karkare, and H. Padmore, “Advances in bright electron sources,” NIM A, vol. 907, p. 209, Nov. 2018, doi: 10.1016/j.nima.2018.03.019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900218303541
[7]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, S. G. Tantawi, and S. Weathersby, “High gradient experiments with X-band cryogenic copper accelerating cavities,” Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102002, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102002
[8]
D. Marx, J. Giner Navarro, D. Cesar, J. Maxson, B. Marchetti, R. Assmann, and P. Musumeci, “Single-shot reconstruction of core 4D phase space of high-brightness electron beams using metal grids,” Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102802, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102802. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102802
[9]
S. Karkare, “Less than 10 meV MTE from Cu,” Santa Fe, NM, Oct-2018 [Online]. Available: https://indico.cern.ch/event/759878/contributions/3151738/
[10]
G. Gevorkyan, S. Karkare, S. Emamian, I. V. Bazarov, and H. A. Padmore, “Effects of physical and chemical surface roughness on the brightness of electron beams from photocathodes,” Phys. Rev. Accel. Beams, vol. 21, no. 9, p. 093401, Sep. 2018, doi: 10.1103/PhysRevAccelBeams.21.093401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.093401
[11]
B. H. Savitzky, I. El Baggari, C. B. Clement, E. Waite, B. H. Goodge, D. J. Baek, J. P. Sheckelton, C. Pasco, H. Nair, N. J. Schreiber, J. Hoffman, A. S. Admasu, J. Kim, S.-W. Cheong, A. Bhattacharya, D. G. Schlom, T. M. McQueen, R. Hovden, and L. F. Kourkoutis, “Image registration of low signal-to-noise cryo-STEM data,” Ultramicroscopy, vol. 191, pp. 56–65, Aug. 2018, doi: 10.1016/j.ultramic.2018.04.008. [Online]. Available: https://doi.org/10.1016/j.ultramic.2018.04.008
[12]
R. Porter, T. Arias, P. Cueva, D. Hall, M. Liepe, J. Maniscalco, D. Muller, and N. Sitaraman, “Next Generation Nb3Sn SRF Cavities for Linear Accelerators,” Proceedings of the 29th Linear Accelerator Conference, Beijing, China, pp. 462–465, Aug. 2018, doi: 10.18429/JACoW-LINAC2018-TUPO055. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/linac2018/doi/JACoW-LINAC2018-TUPO055.html
[13]
J. T. Maniscalco, P. N. Koufalis, and M. Liepe, “Fundamental Studies of Impurity Doping in 1.3 GHz And Higher Frequency SRF Cavities,” in Proc. of LINAC2018, Beijing, China, 2018, doi: doi: 10.18429/JACoW-LINAC2018-TUPO054 [Online]. Available: http://linac2018.vrws.de/papers/tupo054.pdf
[14]
P. Cueva, E. Padget, and D. A. Muller, “A Natural Basis for Unsupervised Machine Learning on Scanning Diffraction Data,” Microsc. Microanal., vol. 24, no. S1, p. 490, Aug. 2018, doi: 10.1017/S1431927618002945. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/natural-basis-for-unsupervised-machine-learning-on-scanning-diffraction-data/2B90D32767DC3A0C7714826758A2FC05
[15]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, Z. Li, S. G. Tantawi, and S. Weathersby, “rf losses in a high gradient cryogenic copper cavity,” Phys. Rev. Accel. Beams, vol. 21, no. 6, p. 061301, Jun. 2018, doi: 10.1103/PhysRevAccelBeams.21.061301. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.061301
[16]
S. S. Baturin and A. Zholents, “Stability condition for the drive bunch in a collinear wakefield accelerator,” Phys. Rev. Accel. Beams, vol. 21, no. 3, p. 031301, Mar. 2018, doi: 10.1103/PhysRevAccelBeams.21.031301. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.031301
[17]
J. Ding, D. Hall, and M. Liepe, “Simulations of RF Field-induced Thermal Feedback in Niobium and Nb3Sn Cavities,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/JACoW-SRF2017-THPB079 [Online]. Available: https://doi.org/10.18429/JACoW-SRF2017-THPB079
[18]
A. Zholents, S. Baturin, D. Doran, W. Jansma, M. Kasa, R. Kustom, H. Perez, J. Power, N. Strelnikov, K. Suthar, E. Trakhtenberg, I. Vasserman, G. Waldschmidt, and J. Xu, “A Conceptual Design of a Compact Wakefield Accelerator for a High Repetition Rate Multi User X-ray Free-Electron Laser Facility,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupmf010. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupmf010
[19]
R. Porter, M. Liepe, J. Maniscalco, and R. Strauss, “Update on Sample Host Cavity Design Work for Measuring Flux Entry and Quench Field,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb044. [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB044.html
[20]
R. Porter, F. Furuta, D. Hall, M. Liepe, and J. Maniscalco, “Effects of Chemical Treatments on the Surface Roughess and Surface Magnetic Field Ehancement of Nb3Sn Films for Superconducting Radio-Frequency Cavities,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb043 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB043.html
[21]
R. Porter, T. A. Arias, P. Cueva, J. Ding, D. Hall, M. Liepe, D. A. Muller, and N. Sitaraman, “Update on Nb3Sn Progress at Cornell University,” in Proc. IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf050 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf050
[22]
C. Pierce, S. Baturin, I. Bazarov, M. Gordon, C. Gulliford, Y.-K. Kim, and J. Maxson, “Understanding and Compensating Emittance Diluting Effects in Highly Optimized Ultrafast Electron Diffraction Beamlines,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpaf024. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpaf024
[23]
J. Paul, I. V. Bazarov, A. Galdi, R. Hennig, S. Karkare, and H. Padmore, “Computational Screening for Low Emittance Photocathodes,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpml053 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2018/papers/thpml053.pdf
[24]
T. Oseroff, D. Hall, M. Liepe, and J. Maniscalco, “High-frequency SRF Cavities,” in Proc. of SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-tupb009 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-TUPB009.html
[25]
T. Oseroff, M. Ge, M. Liepe, J. Maniscalco, S. McNeal, R. Porter, and M. Sowa, “Performance of Samples with Novel SRF Materials and Growth Techniques,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf047 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf047
[26]
J. K. Nangoi, T. A. Arias, S. Karkare, H. Padmore, and A. Schroeder, “The Role of Electron-Phonon Scattering in Transverse Momentum Conservation in PbTe(111) Photocathodes,” in Proc. IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/JACoW-IPAC2018-TUPMF065 [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPMF065
[27]
J. Maniscalco and M. Liepe, “Updates on the DC Field Dependence Cavity,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf044. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf044
[28]
J. Maniscalco and M. Liepe, “A Computational Method for More Accurate Measurements of the Surface Resistance in SRF Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf042. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf042
[29]
J. Maniscalco, P. Koufalis, and M. Liepe, “Modeling of the Frequency and Field Dependence of the Surface Resistance of Impurity-Doped Niobium,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf046. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2018-WEPMF046
[30]
J. Maniscalco, M. Liepe, and R. Porter, “Design Updates on Cavity to Measure Suppression of Microwave Surface Resistance by DC Magnetic Fields,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb005 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB005.html
[31]
D. Liarte, T. Arias, D. Hall, M. Liepe, A. Pack, J. Sethna, N. Sitamaran, and M. Transtrum, “SRF Theory Developments from the Center for Bright Beams,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb040. [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB040.html
[32]
W. Li, I. Bazarov, C. Gulliford, and J. Maxson, “Novel Photocathode Geometry Optimization: Field Enhancing Photoemission Tips,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, p. TUPML029, 2018, doi: 10.18429/jacow-ipac2018-tupml029. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupml029
[33]
S. Karkare, I. Bazarov, S. Emamian, A. Galdi, G. Gevorkyan, H. Padmore, and A. Schmid, “Physical and Chemical Roughness of Alkali-Animonide Cathodes,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpmf080. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpmf080
[34]
D. Hall, P. Cueva, D. Liarte, M. Liepe, D. Muller, R. Porter, and J. Sethna, “Cavity Quench Studies in Nb3Sn Using Temperature Mapping and Surface Analysis of Cavity Cut-outs,” Proceedings of the 18th Int. Conf. on RF Superconductivity, vol. SRF2017, p. China-, 2018, doi: 10.18429/jacow-srf2017-thpb041. [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB041.html
[35]
D. Hall, D. Liarte, M. Liepe, R. Porter, and J. Sethna, “Field-dependence of the Sensitivity to Trapped Flux in Nb3Sn,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb042 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB042.html
[36]
D. Hall, T. A. Arias, P. Cueva, D. Liarte, M. Liepe, D. Muller, R. Porter, J. Sethna, and M. Sitaraman, “High Performance Nb3Sn Cavities,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-wexa01 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-WEXA01.html
[37]
L. Gupta, S. Baturin, M. Ehrlichman, Y.-K. Kim, J. Maxson, R. Meller, D. Rubin, D. Sagan, and J. Shanks, “Beam-Based Sextupolar Nonlinearity Mapping in CESR,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpak137. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpak137
[38]
J. Giner Navarro, R. Assmann, D. Cesar, B. Marchetti, D. Marx, and P. Musumeci, “Electron Microscopy Inspired Setup for Single-Shot 4-D Trace Space Reconstruction of Bright Electron Beams,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpml106 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpml106
[39]
A. Galdi, G. Adhikari, I. Bazarov, L. Cultrera, W. Li, E. Lochocki, J. Maxson, H. Paik, C. Parzyck, C. Pierce, D. Schlom, A. Schroeder, and K. Shen, “Barium Tin Oxide Ordered Photocathodes: First Measurements and Future Perspectives,” in Proc. 9th Int. Particle Accel. Conf., IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupml027 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupml027
[40]
L. Cultrera, J. Bae, A. C. Bartnik, I. V. Bazarov, R. Doane, A. Galdi, C. M. Gulliford, W. H. Li, J. M. Maxson, S. A. McBride, T. P. Moore, C. M. Pierce, C. Xu, and C. University, “Photocathodes R&D for High Brightness and Highly Polarized Electron Beams at Cornell University,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/JACoW-IPAC2018-TUPML028. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPML028
[41]
N. Bell and L. Phillips, “Generation of Flat Ultra-Low Emittance Beams,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpak072. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpak072
[42]
J. K. Bae, I. Bazarov, L. Cultrera, S. Karkare, J. Maxson, P. Musumeci, H. Padmore, and X. Shen, “Multi-photon Photoemission and Ultrafast Electron Heating in Cu Photocathodes at Threshold,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupml026. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupml026


2017

[1]
Z. Ding, S. Karkare, J. Feng, D. Filippetto, M. Johnson, S. Virostek, F. Sannibale, J. Nasiatka, M. Gaowei, J. Sihsheimer, E. Muller, J. Smedley, and H. Padmore, “Temperature-dependent quantum efficiency degradation of K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method,” Phys. Rev. Accel. Beams, vol. 20, no. 11, p. 113401, Nov. 2017, doi: 10.1103/PhysRevAccelBeams.20.113401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.113401
[2]
D. A. Dimitrov, G. I. Bell, J. Smedley, I. Ben-Zvi, J. Feng, S. Karkare, and H. A. Padmore, “Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes,” Jour. Appl. Phys., vol. 122, no. 16, p. 165303, Oct. 2017, doi: 10.1063/1.4996568. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.4996568. [Accessed: 17-Nov-2017]
[3]
S. S. Baturin, A. V. Zinovev, and S. V. Baryshev, “Current Saturation in Nonmetallic Field Emitters,” arXiv:1710.03692 [cond-mat, physics:physics], Oct. 2017, doi: http://arxiv.org/abs/1710.03692. [Online]. Available: http://arxiv.org/abs/1710.03692
[4]
O. Chubenko, S. S. Baturin, K. K. Kovi, A. V. Sumant, and S. V. Baryshev, “Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films,” ACS Appl Mater Interfaces, vol. 9, no. 38, pp. 33229–33237, Sep. 2017, doi: 10.1021/acsami.7b07062. [Online]. Available: https://doi.org/10.1021/acsami.7b07062
[5]
A. Raju, S. Choudhury, D. L. Rubin, A. Wilkinson, and J. P. Sethna, “Finding stability domains and escape rates in kicked Hamiltonians,” arXiv:1707.09336 [cond-mat, physics:physics], Jul. 2017 [Online]. Available: http://arxiv.org/abs/1707.09336
[6]
O. Chubenko, S. Baturin, A. Sumant, A. Zinovev, K. K. Kovi, and S. Baryshev, “Field emission microscopy of ultra-nano-crystalline diamond films,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051543. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051543
[7]
O. Chubenko, A. Afanasev, S. S. Baturin, and S. V. Baryshev, “Locally resolved field emission area and its effect on resulting j-E characteristics: Case study for planar thin film ultrananocrystalline diamond field emitters,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051647. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051647
[8]
S. S. Baturin and A. Zholents, “Upper limit for the accelerating gradient in the collinear wakefield accelerator as a function of the transformer ratio,” Phys. Rev. Accel. Beams, vol. 20, no. 6, p. 061302, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.061302. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.061302
[9]
S. Baturin, A. Zinovev, and S. Baryshev, “Vacuum Effect on Field Emission I-V curves,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jun. 2017, doi: 10.1109/IVNC.2017.8051638. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051638
[10]
P. Gupta, L. Cultrera, and I. Bazarov, “Monte Carlo simulations of electron photoemission from cesium antimonide,” Jour. Appl. Phys., vol. 121, no. 21, p. 215702, Jun. 2017, doi: 10.1063/1.4984263. [Online]. Available: https://doi.org/10.1063/1.4984263
[11]
Y. Sakai, I. Gadjev, P. Hoang, N. Majernik, A. Nause, A. Fukasawa, O. Williams, M. Fedurin, B. Malone, C. Swinson, K. Kusche, M. Polyanskiy, M. Babzien, M. Montemagno, Z. Zhong, P. Siddons, I. Pogorelsky, V. Yakimenko, T. Kumita, Y. Kamiya, and J. B. Rosenzweig, “Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime,” Phys. Rev. Accel. Beams, vol. 20, no. 6, p. 060701, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.060701. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.060701
[12]
R. Porter, M. Liepe, J. Maniscalco, and V. Veshcherevich, “Sample Host Cavity Design for Measuring Flux Entry and Quench,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA126. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA126
[13]
J. Maniscalco, F. Furuta, D. Hall, P. Koufalis, and M. Liepe, “Analysis of Mean Free Path and Field Dependent Surface Resistance,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-WEPVA145. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-WEPVA145
[14]
J. Maniscalco, V. Arrieta, D. Hall, M. Liepe, S. McNeal, R. Porter, and B. Williams, “Cornell Sample Host Cavity: Recent Results,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA123. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA123
[15]
D. Hall, D. Liarte, M. Liepe, and J. Sethna, “Impact of Trapped Magnetic Flux and Thermal Gradients on the Performance of Nb3Sn Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA118. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA118
[16]
D. Hall, T. Arias, P. Cueva, M. Liepe, J. Maniscalco, D. Muller, R. Porter, and N. Sitaraman, “Surface Analysis of Features Seen on Nb3Sn Sample Coupons Grown by Vapour Diffusion,” in Proc. of IPAC2017, Copenhagen, Denmark, 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA119 [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA119
[17]
D. Hall, P. Cueva, D. Liarte, M. Liepe, J. Maniscalco, D. Muller, R. Porter, and J. Sethna, “Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour Diffusion,” in Proc. IPAC2017, Copenhagen, Denmark, 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA116 [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA116
[18]
A. Cahill, A. Fukasawa, C. Limborg, W. Qin, and J. Rosenzweig, “Optimization of Beam Dynamics for an S-Band Ultra-High Gradient Photoinjector,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-TUPAB129. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-TUPAB129
[19]
A. Cahill, V. Dolgashev, J. Rosenzweig, S. Tantawi, and S. Weathersby, “Ultra High Gradient Breakdown Rates in X-Band Cryogenic Normal Conducting Rf Accelerating Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-THPIK125. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-THPIK125
[20]
M. Ashton, J. Paul, S. B. Sinnott, and R. G. Hennig, “Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials,” Phys. Rev. Lett., vol. 118, no. 10, p. 106101, Mar. 2017, doi: 10.1103/PhysRevLett.118.106101. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.118.106101
[21]
S. S. Baturin and S. V. Baryshev, “Electron emission projection imager,” Review of Scientific Instruments, vol. 88, no. 3, p. 033701, Mar. 2017, doi: 10.1063/1.4977472. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/1.4977472
[22]
J. T. Maniscalco, D. Gonnella, and M. Liepe, “The importance of the electron mean free path for superconducting radio-frequency cavities,” Jour. Appl. Phys., vol. 121, no. 4, p. 043910, Jan. 2017, doi: 10.1063/1.4974909. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/1.4974909
[23]
R. D. Porter, F. Furuta, D. L. Hall, M. Liepe, J. T. Maniscalco, and C. University, “Effectiveness of Chemical Treatments for Reducing the Surface Roughness of Nb3Sn,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA124. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA124
[24]
J. T. Paul, A. K. Singh, Z. Dong, H. Zhuang, B. C. Revard, B. Rijal, M. Ashton, A. Linscheid, M. Blonsky, D. Gluhovic, J Guo, and R. G. Hennig, “Computational methods for 2D materials: discovery, property characterization, and application design,” J. Phys.: Condens. Matter, vol. 29, no. 47, p. 473001, 2017, doi: 10.1088/1361-648X/aa9305. [Online]. Available: http://stacks.iop.org/0953-8984/29/i=47/a=473001
[25]
D. B. Liarte, S. Posen, M. K. Transtrum, G. Catelani, M. Liepe, and J. P. Sethna, “Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates,” Supercond. Sci. Technol., vol. 30, no. 3, p. 033002, 2017, doi: 10.1088/1361-6668/30/3/033002. [Online]. Available: http://stacks.iop.org/0953-2048/30/i=3/a=033002


2016



[1]
D. B. Liarte, M. K. Transtrum, and J. P. Sethna, “Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors,” Phys. Rev. B, vol. 94, no. 14, p. 144504, Oct. 2016, doi: 10.1103/PhysRevB.94.144504. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.94.144504
[2]
J. B. Rosenzweig, A. Cahill, V. Dolgashev, C. Emma, A. Fukusawa, R. Li, C. Limborg, J. Maxson, P. Musumeci, A. Nause, R. Pakter, R. Pompili, R. Roussel, B. Spataro, and S. Tantawi, “Next Generation High Brightness Electron Beams From Ultra-High Field Cryogenic Radiofrequency Photocathode Sources,” arXiv:1603.01657 [physics.acc-ph], Mar. 2016 [Online]. Available: http://arxiv.org/abs/1603.01657


Pre-award Publications

[1]
D. B. Liarte, M. K. Transtrum, and J. P. Sethna, "Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors," Phys. Rev. B, vol. 94, no. 14, p. 144504, Oct. 2016 [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.94.144504
[2]
J. B. Rosenzweig et al., "Next Generation High Brightness Electron Beams From Ultra-High Field Cryogenic Radiofrequency Photocathode Sources," arXiv:1603.01657 [physics.acc-ph], Mar. 2016 [Online]. Available: http://arxiv.org/abs/1603.01657